Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Sci Rep ; 14(1): 9515, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664464

RESUMEN

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA 2 DS 2 -VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.


Asunto(s)
Atrios Cardíacos , Hemodinámica , Hidrodinámica , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/fisiopatología , Femenino , Masculino , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/diagnóstico por imagen , Persona de Mediana Edad , Medición de Riesgo/métodos , Anciano , Simulación por Computador , Modelos Cardiovasculares , Imagen por Resonancia Cinemagnética/métodos
2.
Heliyon ; 10(7): e28539, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596055

RESUMEN

Left atrial (LA) fibrosis plays a vital role as a mediator in the progression of atrial fibrillation. 3D late gadolinium-enhancement (LGE) MRI has been proven effective in identifying LA fibrosis. Image analysis of 3D LA LGE involves manual segmentation of the LA wall, which is both lengthy and challenging. Automated segmentation poses challenges owing to the diverse intensities in data from various vendors, the limited contrast between LA and surrounding tissues, and the intricate anatomical structures of the LA. Current approaches relying on 3D networks are computationally intensive since 3D LGE MRIs and the networks are large. Regarding this issue, most researchers came up with two-stage methods: initially identifying the LA center using a scaled-down version of the MRIs and subsequently cropping the full-resolution MRIs around the LA center for final segmentation. We propose a lightweight transformer-based 3D architecture, Usformer, designed to precisely segment LA volume in a single stage, eliminating error propagation associated with suboptimal two-stage training. The transposed attention facilitates capturing the global context in large 3D volumes without significant computation requirements. Usformer outperforms the state-of-the-art supervised learning methods in terms of accuracy and speed. First, with the smallest Hausdorff Distance (HD) and Average Symmetric Surface Distance (ASSD), it achieved a dice score of 93.1% and 92.0% in the 2018 Atrial Segmentation Challenge and our local institutional dataset, respectively. Second, the number of parameters and computation complexity are largely reduced by 2.8x and 3.8x, respectively. Moreover, Usformer does not require a large dataset. When only 16 labeled MRI scans are used for training, Usformer achieves a 92.1% dice score in the challenge dataset. The proposed Usformer delineates the boundaries of the LA wall relatively accurately, which may assist in the clinical translation of LA LGE for planning catheter ablation of atrial fibrillation.

3.
ArXiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38560740

RESUMEN

Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF. To mitigate these issues, we introduce a quantitative pipeline that combines elastic shape analysis with unsupervised learning for the categorization of LAA morphology in AF patients. As part of our pipeline, we compute pairwise elastic distances between LAA meshes from a cohort of 20 AF patients, and leverage these distances to cluster our shape data. We demonstrate that our method clusters LAA morphologies based on distinctive shape features, overcoming the innate inconsistencies of current LAA categorization systems, and paving the way for improved stroke risk metrics using objective LAA shape groups.

4.
Magn Reson Imaging ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604349

RESUMEN

BACKGROUND: Measuring tissue oxygen concentration is crucial in understanding the pathophysiological process of hypoxia in head and neck cancer (HNC) and its significant role in cancer biology. This study aimed to determine the feasibility of T1 mapping using a variable flip angle (VFA) technique with stack of stars (SOS) trajectory sampling in HNC patients undergoing chemoradiotherapy (CRT). METHODS: To evaluate the ability of SOS acquisition to detect T1, a phantom study was conducted and compared to conventional Cartesian acquisition (CART). Additionally, four newly diagnosed patients were recruited and underwent two scans each at baseline and inter-treatment. The repeatability of SOS and CART acquisitions was assessed by comparing the T1 measurements of CSF from the baseline and intra-treatment MRI studies. The changes in ∆T1 of the tumors during air and oxygen inhalation between baseline and inter-treatment scans were also evaluated. RESULTS: Our study found that the 3D VFA SOS sequence was effective in reducing motion artifacts compared to the conventional VFA sequence with CART sampling and the same scan time, as demonstrated by the results from the phantom and patient studies. In terms of repeatability, no significant correlation was observed between the variability in ΔT1 measurements of CSF obtained from SOS T1 maps. The SOS ΔT1 measurements showed higher consistency, as evidenced by the ICC values ranging from 0.52 to 0.92. The ∆T1 measurements on the primary tumors increased after the first CRT (p<0.05) for all patients who showed a positive treatment response, except for one patient (0.05

5.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293150

RESUMEN

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA2DS2-VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.

6.
J Interv Card Electrophysiol ; 67(2): 263-271, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36973597

RESUMEN

BACKGROUND: The low-voltage area detected by electroanatomic mapping (EAM) is a surrogate marker of left atrial fibrosis. However, the correlation between the EAM and late gadolinium enhancement magnetic resonance imaging (LGE-MRI) has been inconsistent among studies. This study aimed to investigate how LA size affects the correlation between EAM and LGE-MRI. METHODS: High-density EAMs of the LA during sinus rhythm were collected in 22 patients undergoing AF ablation. The EAMs were co-registered with pre-ablation LGE-MRI models. Voltages in the areas with and without LGE were recorded. Left atrial volume index (LAVI) was calculated from MRI, and LAVI > 62 ml/m2 was defined as significant LA enlargement (LAE). RESULTS: Atrial bipolar voltage negatively correlates with the left atrial volume index. The median voltages in areas without LGE were 1.1 mV vs 2.0 mV in patients with vs without significant LAE (p = 0.002). In areas of LGE, median voltages were 0.4 mV vs 0.8 mV in patients with vs without significant LAE (p = 0.02). A voltage threshold of 1.7 mV predicted atrial LGE in patients with normal or mildly enlarged LA (sensitivity and specificity of 74% and 59%, respectively). In contrast, areas of voltage less than 0.75 mV correlated with LGE in patients with significant LA enlargement (sensitivity 68% and specificity 66%). CONCLUSIONS: LAVI affects left atrial bipolar voltage, and the correlation between low-voltage areas and LGE-MRI. Distinct voltage thresholds according to the LAVI value might be considered to identify atrial scar by EAM.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Medios de Contraste , Gadolinio , Atrios Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fibrosis , Ablación por Catéter/métodos
7.
JACC Clin Electrophysiol ; 9(11): 2253-2262, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737783

RESUMEN

BACKGROUND: Left atrial (LA) enlargement is prevalent among atrial fibrillation (AF) patients and constitutes an important marker of atrial myopathy. Several studies have described reduction in LA volume post-catheter ablation (CA) of AF, however, none have investigated differences related to additional ablation outside the pulmonary veins (PVs). OBJECTIVES: The authors sought to study early LA remodeling following CA of persistent AF and the impact of additional, fibrosis-guided extra-PV ablation. METHODS: In this DECAAF II (Effect of MRI-Guided Fibrosis Ablation vs Conventional Catheter Ablation on Atrial Arrhythmia Recurrence in Patients With Persistent Atrial Fibrillation) trial subanalysis, patients with persistent AF were randomized to receive pulmonary vein isolation (PVI) only or PVI + fibrosis-guided ablation. Late gadolinium enhancement magnetic resonance imaging (LGE-MRI) was performed before and 3 months after CA. Patients were followed up with single-lead electrocardiogram devices for 12 to18 months. AF burden was calculated as days with AF divided by days monitored. RESULTS: This analysis included 733 patients. The mean LA volume index (LAVI) before ablation was 62.0 mm3/m2 and after ablation was 51.3 mm3/m2, with a mean reduction of 10.7 mm3/m2 (P < 0.001). Patients in the fibrosis-guided ablation arm had more volume reduction than did those in the PVI-only group (12.1 mm3/m2 vs 9.3 mm3/m2; P = 0.02). LAVI reduction was greater in patients with heart failure (15.7 vs 8.9; P = 0.001) and was associated with improved left ventricular ejection fraction (LVEF) (r = 0.23; P < 0.001), reduced AF burden (r = -0.173; P < 0.001), improved LVEF, and improved quality of life (r = 0.146; P < 0.001). CONCLUSIONS: We confirmed the presence of LA remodeling within 3 months after ablation for persistent AF. Importantly, we saw more LA volume reductions in patients in the PVI + fibrosis-guided ablation arm in comparison with PVI only, and in patients with LV dysfunction. LA volume reduction in response to CA is associated with decreased arrhythmia recurrence, reduced AF burden, and improved LVEF and quality of life.


Asunto(s)
Fibrilación Atrial , Cardiomiopatías , Ablación por Catéter , Humanos , Volumen Sistólico , Medios de Contraste , Calidad de Vida , Función Ventricular Izquierda , Gadolinio , Atrios Cardíacos , Fibrosis , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-37287952

RESUMEN

Accurate quantification of left atrium (LA) scar in patients with atrial fibrillation is essential to guide successful ablation strategies. Prior to LA scar quantification, a proper LA cavity segmentation is required to ensure exact location of scar. Both tasks can be extremely time-consuming and are subject to inter-observer disagreements when done manually. We developed and validated a deep neural network to automatically segment the LA cavity and the LA scar. The global architecture uses a multi-network sequential approach in two stages which segment the LA cavity and the LA Scar. Each stage has two steps: a region of interest Neural Network and a refined segmentation network. We analysed the performances of our network according to different parameters and applied data triaging. 200+ late gadolinium enhancement magnetic resonance images were provided by the LAScarQS 2022 Challenge. Finally, we compared our performances for scar quantification to the literature and demonstrated improved performances.

9.
Magn Reson Imaging ; 101: 40-46, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37030177

RESUMEN

PURPOSE: To evaluate the dependence of the arterial input function (AIF) on the imaging z-axis and its effect on 3D DCE MRI pharmacokinetic parameters as mediated by the SPGR signal equation and Extended Tofts-Kermode model. THEORY: For SPGR-based 3D DCE MRI acquisition of the head and neck, inflow effects within vessels violate the assumptions underlying the SPGR signal model. Errors in the SPGR-based AIF estimate propagate through the Extended Tofts-Kermode model to affect the output pharmacokinetic parameters. MATERIALS AND METHODS: 3D DCE-MRI data were acquired for six newly diagnosed HNC patients in a prospective single arm cohort study. AIF were selected within the carotid arteries at each z-axis location. A region of interest (ROI) was placed in normal paravertebral muscle and the Extended Tofts-Kermode model solved for each pixel within the ROI for each AIF. Results were compared to those obtained with a published population average AIF. RESULTS: Due to inflow effect, the AIF showed extreme variation in their temporal shapes. Ktrans was most sensitive to the initial bolus concentration and showed more variation over the muscle ROI with AIF taken from the upstream portion of the carotid. kep was less sensitive to the peak bolus concentration and showed less variation for AIF taken from the upstream portion of the carotid. CONCLUSION: Inflow effects may introduce an unknown bias to SPGR-based 3D DCE pharmacokinetic parameters. Variation in the computed parameters depends on the selected AIF location. In the context of high flow, measurements may be limited to relative rather than absolute quantitative parameters.


Asunto(s)
Medios de Contraste , Neoplasias de Cabeza y Cuello , Humanos , Medios de Contraste/farmacocinética , Estudios de Cohortes , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Arterias Carótidas , Algoritmos , Reproducibilidad de los Resultados
10.
Europace ; 25(3): 889-895, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36738244

RESUMEN

AIMS: The aim of our study was to assess differences in post-ablation atrial fibrillation (AF) recurrence and burden and to quantify the change in LVEF across different congestive heart failure (CHF) subcategories of the DECAAF-II population. METHODS AND RESULTS: Differences in the primary outcome of AF recurrence between CHF and non-CHF groups was calculated. The same analysis was performed for the three subgroups of CHF and the non-CHF group. Differences in AF burden after the 3-month blanking period between CHF and non-CHF groups was calculated. Improvement in LVEF was calculated and compared across the three CHF groups. Improvement was also calculated across different fibrosis stages. There was no significant differences in AF recurrence and AF burden after catheter ablation between CHF and non-CHF patients and between different CHF subcategories. Patients with heart failure with reduced ejection fraction (HFrEF) experienced the greatest improvement in EF following catheter ablation (CA, 16.66% ± 11.98, P < 0.001) compared to heart failure with moderately reduced LVEF, and heart failure with preserved EF (10.74% ± 8.34 and 2.00 ± 8.34 respectively, P-value < 0.001). Moreover, improvement in LVEF was independent of the four stages of atrial fibrosis (7.71 vs. 9.53 vs. 5.72 vs. 15.88, from Stage I to Stage IV respectively, P = 0.115). CONCLUSION: Atrial fibrillation burden and recurrence after CA is similar between non-CHF and CHF patients, independent of the type of CHF. Of all CHF groups, those with HFrEF had the largest improvement in LVEF after CA. Moreover, the improvement in ventricular function seems to be independent of atrial fibrosis in patients with persistent AF.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/cirugía , Volumen Sistólico/fisiología , Resultado del Tratamiento , Función Ventricular Izquierda/fisiología , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/cirugía , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Fibrosis
12.
Front Cardiovasc Med ; 9: 920539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811729

RESUMEN

Background: Interlesion gaps and transmurality of lesions after catheter ablation can precipitate suboptimal efficacy in preventing arrhythmias. Aims: We aim to assess predictors of acute transmural lesion formation and the interlesion distance threshold for creating a continuous, chronic scar after ventricular ablation. Materials and Methods: Ablation procedures were performed on 7 canines followed by late gadolinium enhancement MRI (LGE-MRI). Transmurality of lesions was assessed by 2 independent operators. Ablation parameters such as duration (s), power (W), temperature (C), contact force (CF) (g), were collected for each ablation point. After 7-12 weeks, LGE-MRI was performed, followed by euthanasia, and heart excision. Some lesions were created in pair. Lesion pairs were spaced 7-21 mm apart as measured by Electroanatomic mapping (EAM), with different operating parameters (power 35 or 50W, duration of energy delivery 10, 20 or 30s and contact force of 10g or above). We performed a logistic regression analysis to determine predictors of transmural lesion formation. Results: Eighty-one radiofrequency ablation were performed in total [33 in the Left ventricle (LV) and 48 in the Right ventricle (RV)]. Higher CF was a significant predictor of transmural lesion formation (ß = 0.15, OR = 1.16, 95% CI [1.03 - 1.3], p = 0.01), and lesions delivered in the RV were more frequently transmural than lesions delivered in the LV (ß = -2.43, OR = 0.09, 95%CI [0.02 - 0.34], p < 0.001). For the paired analysis, thirty-eight lesions were created contiguously: fourteen connected lesions and twenty-four unconnected lesions. EAM distance was significantly larger in unconnected lesions than connected lesions (16.17 ± 0.92 mm vs. 11.51 ± 0.68 mm, respectively, p < 0.05). We concluded that an interlesion distance of less than 10 mm is required to prevent gap formation. Average volumes in unconnected lesions (n = 24) at the acute and chronic stages were 0.55 ± 0.11 cm3 and 0.20 ± 0.02 cm3, respectively. On average, lesion volumes were 64% (p < 0.05) smaller at the chronic stage compared to the acute stage. Among connected lesions (n = 14), we observed a volume of 1.19 ± 0.8 cm3 and 0.39 ± 0.15 cm3 at the acute and chronic stages, respectively. These connected lesions reduced in volume by 67% on average. Conclusion: To create contiguous scars on the ventricular endocardial surface, paired lesions should be spaced less than ten millimeters apart. Higher contact force should be used in ventricular ablation to create transmural lesions.

13.
JAMA ; 327(23): 2296-2305, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727277

RESUMEN

Importance: Ablation of persistent atrial fibrillation (AF) remains a challenge. Left atrial fibrosis plays an important role in the pathophysiology of AF and has been associated with poor procedural outcomes. Objective: To investigate the efficacy and adverse events of targeting atrial fibrosis detected on magnetic resonance imaging (MRI) in reducing atrial arrhythmia recurrence in persistent AF. Design, Setting, and Participants: The Efficacy of Delayed Enhancement-MRI-Guided Fibrosis Ablation vs Conventional Catheter Ablation of Atrial Fibrillation trial was an investigator-initiated, multicenter, randomized clinical trial involving 44 academic and nonacademic centers in 10 countries. A total of 843 patients with symptomatic or asymptomatic persistent AF and undergoing AF ablation were enrolled from July 2016 to January 2020, with follow-up through February 19, 2021. Interventions: Patients with persistent AF were randomly assigned to pulmonary vein isolation (PVI) plus MRI-guided atrial fibrosis ablation (421 patients) or PVI alone (422 patients). Delayed-enhancement MRI was performed in both groups before the ablation procedure to assess baseline atrial fibrosis and at 3 months postablation to assess for ablation scar. Main Outcomes and Measures: The primary end point was time to first atrial arrhythmia recurrence after a 90-day blanking period postablation. The primary safety composite outcome was defined by the occurrence of 1 or more of the following events within 30 days postablation: stroke, PV stenosis, bleeding, heart failure, or death. Results: Among 843 patients who were randomized (mean age 62.7 years; 178 [21.1%] women), 815 (96.9%) completed the 90-day blanking period and contributed to the efficacy analyses. There was no significant difference in atrial arrhythmia recurrence between groups (fibrosis-guided ablation plus PVI patients, 175 [43.0%] vs PVI-only patients, 188 [46.1%]; hazard ratio [HR], 0.95 [95% CI, 0.77-1.17]; P = .63). Patients in the fibrosis-guided ablation plus PVI group experienced a higher rate of safety outcomes (9 [2.2%] vs 0 in PVI group; P = .001). Six patients (1.5%) in the fibrosis-guided ablation plus PVI group had an ischemic stroke compared with none in PVI-only group. Two deaths occurred in the fibrosis-guided ablation plus PVI group, and the first one was possibly related to the procedure. Conclusions and Relevance: Among patients with persistent AF, MRI-guided fibrosis ablation plus PVI, compared with PVI catheter ablation only, resulted in no significant difference in atrial arrhythmia recurrence. Findings do not support the use of MRI-guided fibrosis ablation for the treatment of persistent AF. Trial Registration: ClinicalTrials.gov Identifier: NCT02529319.


Asunto(s)
Técnicas de Ablación , Fibrilación Atrial , Fibrosis , Atrios Cardíacos , Imagen por Resonancia Magnética , Cirugía Asistida por Computador , Técnicas de Ablación/efectos adversos , Técnicas de Ablación/métodos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Femenino , Fibrosis/diagnóstico por imagen , Fibrosis/cirugía , Atrios Cardíacos/patología , Atrios Cardíacos/cirugía , Humanos , Masculino , Persona de Mediana Edad , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Recurrencia , Cirugía Asistida por Computador/efectos adversos , Cirugía Asistida por Computador/métodos , Resultado del Tratamiento
14.
JSES Int ; 6(2): 297-304, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35252930

RESUMEN

BACKGROUND: Historically, imaging osseous detail in three dimensions required a computed tomography (CT) scan with ionizing radiation that poorly visualizes the soft tissues. The purpose of this study was to determine the accuracy and reliability of ultrashort echo time (UTE) magnetic resonance imaging (MRI) in measuring humeral cortical thickness and cancellous density as compared with CT. METHODS: This was a comparative radiographic study in nine cadavers, each of which underwent CT and UTE MRI. On images aligned to the center of the humeral shaft, anterior, posterior, medial, and lateral humeral cortical thickness was measured 5, 10, and 15 cm distal to the top of the head. Cancellous density was measured as signal within a 1-cm diameter region of interest in the center of the head, the subtuberosity head, the subarticular head, and the subarticular glenoid vault. Glenoid cortical thickness was measured at the center of the glenoid. Cortical measurements were compared using mean differences and 95% confidence intervals, paired Student's t-tests, and intraclass correlation coefficients (ICCs). We compared cancellous measurements using Pearson's correlation coefficients. For all measurements, we calculated interobserver and intraobserver reliability using ICCs with 0.75 as the lower limit for acceptability. RESULTS: With regard to accuracy, for humeral cortical thickness measurements, there were no significant differences between MRI and CT measures, and ICCs were >0.75. The glenoid cortical thickness ICC was <0.75. There was no significant correlation between the cancellous signal on MRI and on CT in any region. For both MRI and CT, interobserver reliability and intraobserver reliability were acceptable (ie, >0.75) for almost all humeral cortical thickness measures. CONCLUSION: UTE MRI can reliably and accurately measure humeral cortical thickness, but cannot accurately measure cancellous density or accurately and reliably measure glenoid cortical thickness.

15.
Br J Radiol ; 94(1123): 20210048, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34111982

RESUMEN

OBJECTIVES: Magnetic resonance angiography (MRA) has been established as an important imaging method in cardiac ablation procedures. In pulmonary vein (PV) isolation procedures, MRA has the potential to minimize the risk of severe complications, such as atrio-esophageal fistula, by providing detailed information on esophageal position relatively to cardiac structures. However, traditional non-gated, first-pass (FP) MRA approaches have several limitations, such as long breath-holds, non-uniform signal intensity throughout the left atrium (LA), and poor esophageal visualization. The aim of this observational study was to validate a respiratory-navigated, ECG-gated (EC), saturation recovery-prepared MRA technique for simultaneous imaging of LA, LA appendage, PVs, esophagus, and adjacent anatomical structures. METHODS: Before PVI, 106 consecutive patients with a history of AF underwent either conventional FP-MRA (n = 53 patients) or our new EC-MRA (n = 53 patients). Five quality scores (QS) of LA and esophagus visibility were assessed by two experienced readers. The non-parametric Mann-Whitney U-test was used to compare QS between FP-MRA and EC-MRA groups, and linear regression was applied to assess clinical contributors to image quality. RESULTS: EC-MRA demonstrated significantly better image quality than FP-MRA in every quality category. Esophageal visibility using the new MRA technique was markedly better than with the conventional FP-MRA technique (median 3.5 [IQR 1] vs median 1.0, p < 0.001). In contrast to FP-MRA, overall image quality of EC-MRA was not influenced by heart rate. CONCLUSION: Our ECG-gated, respiratory-navigated, saturation recovery-prepared MRA technique provides significantly better image quality and esophageal visibility than the established non-gated, breath-holding FP-MRA. Image quality of EC-MRA technique has the additional advantage of being unaffected by heart rate. ADVANCES IN KNOWLEDGE: Detailed information of cardiac anatomy has the potential to minimize the risk of severe complications and improve success rates in invasive electrophysiological studies. Our novel ECG-gated, respiratory-navigated, saturation recovery-prepared MRA technique provides significantly better image quality of LA and esophageal structures than the traditional first-pass algorithm. This new MRA technique is robust to arrhythmia (tachycardic, irregular heart rates) frequently observed in AF patients.


Asunto(s)
Apéndice Atrial/diagnóstico por imagen , Fibrilación Atrial/diagnóstico por imagen , Esófago/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodos , Venas Pulmonares/diagnóstico por imagen , Contencion de la Respiración , Técnicas de Imagen Sincronizada Cardíacas , Medios de Contraste , Femenino , Humanos , Masculino , Meglumina/análogos & derivados , Persona de Mediana Edad , Compuestos Organometálicos , Técnicas de Imagen Sincronizada Respiratorias
16.
J Am Heart Assoc ; 10(7): e018924, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33759540

RESUMEN

Background Esophageal thermal injury (ETI) is a byproduct of atrial fibrillation (AF) ablation using thermal sources. The most severe form of ETI is represented by atrioesophageal fistula, which has a high mortality rate. Late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) allows identification of ETI. Hence, we sought to evaluate the utility of LGE-MRI as a method to identify ETI across the entire spectrum of severity. Methods and Results All AF radiofrequency ablations performed at the University of Utah between January 2009 and December 2017 were reviewed. Patients with LGE-MRI within 24 hours following AF ablation as well as patients who had esophagogastroduodenoscopy in addition to LGE-MRI were identified. An additional patient with atrioesophageal fistula who had AF ablation at a different institution and had MRI and esophagogastroduodenoscopy at the University of Utah was identified. A total of 1269 AF radiofrequency ablations were identified. ETI severity was classified on the basis of esophageal LGE pattern (none, 60.9%; mild, 27.5%; moderate, 9.9%; severe, 1.7%). ETI resolved in most patients who underwent repeat LGE-MRI at 3 months. All patients with esophagogastroduodenoscopy-confirmed ETI had moderate-to-severe LGE 24 hours after ablation MRI. Moderate-to-severe LGE had 100% sensitivity and 58.1% specificity in detecting ETI, and a negative predictive value of 100%. Atrioesophageal fistula was visualized by both computed tomography and LGE-MRI in one patient. Conclusions LGE-MRI is useful in detecting and characterizing ETI across the entire severity spectrum. LGE-MRI exhibits an extremely high sensitivity and negative predictive value in screening for ETI after AF ablation.


Asunto(s)
Fibrilación Atrial/cirugía , Quemaduras/diagnóstico , Ablación por Catéter/efectos adversos , Esófago/lesiones , Gadolinio/farmacología , Imagen por Resonancia Magnética/métodos , Anciano , Quemaduras/etiología , Medios de Contraste/farmacología , Esofagoscopía/métodos , Esófago/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Masculino , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Factores de Tiempo
17.
J Cardiovasc Electrophysiol ; 32(4): 916-924, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600025

RESUMEN

INTRODUCTION: Success rates of catheter ablation in persistent atrial fibrillation (AF) remain suboptimal. A better and more targeted ablation strategy is urgently needed to optimize outcomes of AF treatment. We sought to assess the safety and efficacy of targeting atrial fibrosis during ablation of persistent AF patients in improving procedural outcomes. METHODS: The DECAAF II trial (ClinicalTrials. gov identifier number NCT02529319) is a prospective, randomized, multicenter trial of patients with persistent AF. Patients with persistent AF undergoing a first-time ablation procedure were randomized in a 1:1 fashion to receive conventional pulmonary vein isolation (PVI) ablation (Group 1) or PVI + fibrosis-guided ablation (Group 2). Left atrial fibrosis and ablation induced scarring were defined by late gadolinium enhancement magnetic resonance imaging at baseline and at 3-12 months postablation, respectively. The primary endpoint is the recurrence of atrial arrhythmia postablation, including atrial fibrillation, atrial flutter, or atrial tachycardia after the 90-day postablation blanking period. Patients were followed for a period of 12-18 months with a smartphone ECG Device (ECG Check Device, Cardiac Designs Inc.). With an anticipated enrollment of 900 patients, this study has an 80% power to detect a 26% reduction in the hazard ratio of the primary endpoint. RESULTS AND CONCLUSION: The DECAAF II trial is the first prospective, randomized, multicenter trial of patients with persistent AF using imaging defined atrial fibrosis as a treatment target. The trial will help define an optimal approach to catheter ablation of persistent AF, further our understanding of influencers of ablation lesion formation, and refine selection criteria for ablation based on atrial myopathy burden.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Ablación por Catéter/efectos adversos , Medios de Contraste , Fibrosis , Gadolinio , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Venas Pulmonares/cirugía , Recurrencia , Resultado del Tratamiento
18.
Front Cardiovasc Med ; 8: 791217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155604

RESUMEN

BACKGROUND: Chronic lesion formation after cardiac tissue ablation is an important indicator for procedural outcome. Moreover, there is a lack of knowledge regarding the features that predict chronic lesion formation. OBJECTIVE: The aim of this study is to determine whether acute lesion visualization using late gadolinium enhanced magnetic resonance imaging (LGE-MRI) can reliably predict chronic lesion size. METHODS: Focal lesions were created in left and right ventricles of canine models using either radiofrequency (RF) ablation or cryofocal ablation. Multiple ablation parameters were used. The first LGE-MRI was acquired within 1-5 h post-ablation and the second LGE-MRI was obtained 47-82 days later. Corview software was used to perform lesion segmentations and size calculations. RESULTS: Fifty-Five lesions were created in different locations in the ventricles. Chronic volume size decreased by a mean of 62.5 % (95% CI 58.83-67.97, p < 0.0005). Similar regression of lesion volume was observed regardless of ablation location (p = 0.32), ablation technique (p = 0.94), duration (p = 0.37), power (p = 0.55) and whether lesions were connected or not (p = 0.35). There was no significant difference in lesion volume reduction assessed at 47-54 days and 72-82 days after ablation (p = 0.31). Chronic lesion volume was equal to 0.32 of the acute lesion volumes (R2 = 0.75). CONCLUSION: Chronic tissue injury related to catheter ablation can be reliably modeled as a linear function of the acute lesion volume as assessed by LGE-MRI, regardless of the ablation parameters.

19.
Radiol Cardiothorac Imaging ; 2(5): e200134, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33154994

RESUMEN

PURPOSE: To develop an accelerated three-dimensional (3D) late gadolinium enhancement (LGE) pulse sequence using balanced steady-state free precession readout with stack-of-stars k-space sampling and extra motion-state golden-angle radial sparse parallel (XD-GRASP) reconstruction and test the performance for detecting atrial scar and fibrosis in patients with atrial fibrillation (AF). MATERIALS AND METHODS: Twenty-five patients with AF (20 paroxysmal and five persistent; 65 years ± 7 [standard deviation]; 18 men) were imaged at 1.5 T using the proposed LGE sequence with 1.3 mm × 1.3 mm × 2-mm spatial resolution and predictable imaging time. The resulting images were compared with historic images of 25 patients with AF (18 paroxysmal and seven persistent; 67 years ± 10; 14 men) obtained using a reference 3D left atrial (LA) LGE sequence with 1.3 mm × 1.3 mm × 2.5-mm spatial resolution. Two readers visually graded the 3D LGE images (conspicuity, artifact, noise) on a five-point Likert scale (1 = worst, 3 = acceptable, 5 = best), in which the summed visual score (SVS) of 9 or greater was defined as clinically acceptable. Appropriate statistical analyses (Cohen κ coefficient, Mann-Whitney U test, t tests, and intraclass correlation) were performed, where a P value < .05 was considered significant. RESULTS: Mean imaging time was significantly shorter (P < .01) for the proposed pulse sequence (5.9 minutes ± 1.3) than for the reference pulse sequence (10.6 minutes ± 2). Median SVS was significantly higher (P < .01) for the proposed (SVS = 11) than reference (SVS = 9.5) 3D LA LGE images. Interrater reproducibility in visual scores was higher for the proposed (κ = 0.78-1) than reference 3D LA LGE (κ = 0.44-0.75). Intrareader repeatability in fibrosis quantification was higher for the reference cohort (intraclass correlation coefficient [ICC] = 0.94) than the prospective cohort (ICC = 0.79). CONCLUSION: The proposed 3D LA LGE method produced clinically acceptable image quality with 1.5 mm × 1.5 mm × 2-mm nominal spatial resolution and 6-minute predictable imaging time for quantification of LA scar and fibrosis in patients with AF. Supplemental material is available for this article. © RSNA, 2020.

20.
Am Heart J ; 226: 206-213, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32615358

RESUMEN

INTRODUCTION: Endurance athletes are at higher risk for developing atrial fibrillation as compared to the general population. The exact mechanism to explain this observation is incompletely understood. Our study aimed to determine whether degree of left atrial fibrosis detected by late gadolinium-enhancement magnetic resonance imaging (LGE-MRI) differed between Masters athletes and non-athlete controls. METHODS: We recruited 20 endurance healthy Masters athletes and 20 healthy control subjects who underwent cardiac MRI. Healthy controls were recruited during screening colonoscopies and Masters athletes were recruited through word of mouth and at competitions. The two groups were age and gender matched. None of the participants were known to have an arrhythmia. Fibrosis, as measured by late gadolinium-enhancement, was measured in each participant by blinded readers. The degree of left atrial fibrosis was compared between the two groups. All participants were recruited from the Salt Lake City region and scanned at the University of Utah healthcare complex. RESULTS: Left ventricular function was normal in all study participants. Left atrial volumes were significantly larger in the athletes (74.2 ml ±â€¯14.4) as compared to the healthy control subjects (60.8 mL ±â€¯21.4) (P = .02). Mean left atrial fibrosis score, reported as a percentage of the LA, was 15.5% ±â€¯5.9 in the athlete cohort compared to 9.6% ±â€¯4.9 in the controls (P = .002). CONCLUSIONS: To our knowledge this is the first study that describes, characterizes and specifically quantifies fibrotic changes within the left atrium of highly trained endurance athletes. Increased atrial fibrosis seen in this population may be an early indicator for endurance athletes at risk of developing atrial arrhythmias.


Asunto(s)
Entrenamiento Aeróbico/efectos adversos , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/patología , Imagen por Resonancia Magnética , Adulto , Estudios de Cohortes , Medios de Contraste , Entrenamiento Aeróbico/métodos , Femenino , Fibrosis/diagnóstico por imagen , Fibrosis/etiología , Gadolinio , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Deportes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA